激光等离子体 X 射线偏振度探测

施 军 肖沙里 徐道连 钱家渝 王洪建

(重庆大学光电技术及系统教育部重点实验室,重庆 400030)

摘要为了对激光等离子体偏振状态进行诊断,研究了 X 射线偏振度的测量方案及推算方法,利用两台晶体谱仪 分别在相互正交的两方向对等离子体辐射的 X 射线进行探测,以确定其偏振度。光谱仪采用 PET 晶体作为分光 器件,成像板接收 X 射线光谱信号,其接收面积为 15 mm×35 mm,在 2×10 J 激光装置上进行了偏振检测实验。 实验结果表明在两方向同时得到 Al 的类 He 谱线及类 Li 伴线,依据类 He 共振线 w 及互组合线 y 两方向光谱相 对强度计算出共振线偏振度数据,利用不同发次实验分析入射激光能量和 X 射线偏振度的关系,探索了 X 射线偏 振度对激光等离子体电子温度诊断的影响。

关键词 X射线光谱;晶体谱仪;等离子体诊断;偏振度

中图分类号 O536 文献标识码 A doi: 10.3788/AOS201131.s100401

X-Ray Line Polarization Detection for Laser-Produced Plasmas

Shi Jun Xiao Shali Xu Daolian Qian Jiayu Wang Hongjian

(Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400030, China)

Abstract In order to diagnose X-ray line polarization of laser-produced plasmas, two crystal spectrometers have been used for measuring spectra. They can measure X-ray lines radiated by plasmas in directions of vertical and horizontal for detection of polarization degree. Measuring principle of X-ray polarization is studied in detail and mathematical computation is given. PET is dispersion crystal of spectrometer and X-ray spectra emitted from planar Al target are photographed by using spectrometers with two pieces of image plates (15 mm \times 35 mm) on 2 \times 10 J laser facility. Experimental result shows that the spectra of He-like and Li-like in directions of vertical and horizontal can be obtained. Polarization degree of resonance line w is calculated based on intensity rate of resonance line w and intercombination line y. The relation between laser energy and X-ray polarization degree is found with experimental results of two shots and effect of polarization degree on diagnosis of plasma temperature is discussed.

Key words X-ray spectrum; crystal spectrometer; plasma diagnosis; polarization degree

OCIS codes 120.5410; 300.6560; 340.7480; 350.5400

1 引

言

在 X 射线光谱区域,辐射谱线的偏振特性不仅 是实验室研究的重要内容,同时在太空天体物理学 太阳耀斑研究中也是探讨的主题。X 射线偏振由各 向异性的非麦克斯韦电子产生,能将电子分布态从 各向同性的等离子体中分离,从而研究电子分布各 向异性特性。原子光谱的电子碰撞偏振理论模型常 利用密度矩阵法描述,研究角动量分布及通过电磁 场辐射偏振。而比较系统的量化计算理论模型是将 原子截面数据用于磁次能级偏振辐射推算,其方法 是利用不同代码及原子分子相关数据编辑运算不同 谱线偏振度^[1~3]。第一次等离子体偏振测量是利用 电子束离子阱(EBIT)来检测 Sc 和 Fe 高电离的类 He 及类 Li 离子的偏振 X 射线谱^[4,5]。近十几年来 在不同的装置上进行了 X 射线偏振实验研究,如 Z 箍缩装置^[6],激光等离子体^[7~9],托卡马克等离子 体^[10]等,很多实验结果证实在高能量及等离子体出 现电子束时麦克斯韦分布函数各向异性。

基金项目:国家自然科学基金(11075226)资助课题。

作者简介:施 军(1972—),男,博士,讲师,主要从事光学工程及激光等离子体光谱诊断等方面的研究。 E-mail: shijun@cqu. edu. cn

收稿日期: 2010-08-21; 收到修改稿日期: 2010-12-01

本文探讨了 X 射线偏振度测量方法及计算的 相关理论,并在 2×10 J 激光器装置上进行了偏振 光谱探测实验,利用 PET 晶体在相互正交的两方向 对激光等离子体辐射的 X 射线进行衍射,采用成像 板接收光谱信号,对获取的谱线进行解谱,得到 Al 的类 He 谱线及类 Li 伴线,分析了 Al 的类 He 共振 线 w 的偏振度,研究了入射激光功率与偏振度的关 系,探讨了偏振度对等离子体电子温度诊断结果的 影响。

2 X射线偏振度理论计算分析

电子碰撞激发产生离子,其速率分布各向异性 时发射光谱部分偏振,偏振问题中基本的不对称是 碰撞电子的轨道运动。由碰撞离子激发产生的 X 射线强度和偏振度依赖于相对离子或电子运动速率 方向的观测角,假定类 H、类 He 等离子与单能电子 于 z 轴方向碰撞,在与 z 轴成 90°方向进行观测,平 行于 z 轴方向的偏振光强度为 $I_{//}$,垂直方向偏振光 强度为 I_{\perp} ,经受激跃迁辐射谱线的偏振度定义为

$$P = \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + I_{\perp}},\tag{1}$$

光谱仪采用分光晶体获取特定波长的 X 射线,检测的 X 射线强度为

$$I_{obs} = R_{/\!/} I_{/\!/} + R_{\perp} I_{\perp}$$
, (2)
式中 $R_{/\!/}, R_{\perp}$ 分别是偏振 X 射线垂直及平行于衍射
面的晶体积分反射率,通常而言 $R_{/\!/} \neq R_{\perp}$, R_{\perp} 与
 $R_{/\!/}$ 的比值 R 主要由布拉格角 θ 决定,对镶嵌晶体而
言 R 为 cos²(2 θ),完美晶体 R 为 cos(2 θ),实际使用
的晶体 R 介于两者之间^[11]。

本文实验中 PET 晶体在相互正交的方向衍射 Al 等离子体辐射的 X 射线。实验中晶体衍射面平 行于激光辐射方向称为 H 方向,与 H 正交方向称 为 V 方向。 $I_{//}, I_{\perp}$ 分量分别为^[12]

$$I_{\#} = \frac{I_{\rm v} - I_{\rm H} \cos(2\theta)}{1 - \cos^2(2\theta)},$$
 (3)

$$I_{\perp} = \frac{I_{\rm H} - I_{\rm V} \cos(2\theta)}{1 - \cos^2(2\theta)},\tag{4}$$

式中 $I_{\rm H}$, $I_{\rm V}$ 是在H及V方向获取的X射线强度, θ 为 布拉格角,即入射X射线与晶体反射面之间的夹角。

通常通过测试类 H、类 He 离子辐射 X 射线偏振来确定电子分布各向异性,EBIT 装置中电子束在与电子运动平行方向碰撞离子激发的 X 射线有明显的偏振现象,类 He 离子辐射偏振被典型研究^[13,14]。实验是研究激光轰击铝靶辐射的类氦共

振线 w、互组合线 y 及类 Li 伴线的偏振现象, Al 的 核自旋量子数 I=5/2, 因超精细结构影响, 互组合 线 y 偏振度近似为零^[15], 故可以用来校准本探测系 统,以确定共振线 w 的偏振度。

3 X射线偏振实验原理

目前对可见光偏振检测的相关研究很多^[16],而 X 射线偏振研究还处于起步阶段。X 射线偏振探测 实验原理如图 1 所示,高功率激光照射 Al 平面靶产 生高温等离子体,辐射 X 射线,然后在水平及垂直 方向各用一幅 PET 平面晶体对 X 射线进行衍射, 同时分别用 X 射线感光器件接收信号。Al 的类 He 共振线(w)波长为 0.7757 nm,PET 晶体 2d 值为 0.8742 nm,晶体衍射角 θ 由下式决定:

$$\sin \theta = \frac{n\lambda}{2d},\tag{5}$$

式中 λ 为X射线波长,2d为晶格常数,n为衍射阶次。利用晶体一阶衍射(n = 1),能够计算出 $\theta = 62.5^{\circ}$ 。实验中感光器件采用富士成像板,其尺寸为15 mm×35 mm,对水平及垂直方向信号进行分析可以计算出谱线偏振方面的信息。

图 1 X射线偏振光谱探测原理图 Fig. 1 Principle of polarization detection

4 实 验

4.1 实验设置

探测实验在中国工程物理研究院激光装置(2× 10 J)上进行,其中一晶体谱仪安装在靶室外面正北 方,如图 2 所示,其内部晶体接收垂直方向的 X 射 线分量,另一晶体谱仪置于激光器靶室内,接收水平 方向的 X 射线分量。将厚度为 100 μ m 的 Al 平面 靶东偏南 45°方向放置,三倍频激光由西向东入射, 激光束与靶面法线夹角约为 45°,入射激光波长为 0.35 μ m,激光能量为 3~7 J,激光脉宽为 800 ps,焦 斑直径约 Φ 120 μ m,靶面功率密度在(1~2)× 10¹³ W/cm²范围。靶室外谱仪的晶体中心与靶点的 距离为831 mm,与成像板距离为147 mm;靶室内 谱仪晶体中心与靶点距离为 273 mm,与成像板距 离为52mm。实验第一发次激光能量为5.86J,获 取的谱线如图 3 所示,成像板上的类 He 谱线及类 Li 伴线光谱很清晰。由于垂直方向布置的 PET 晶 体相对于水平方向晶体距离 X 射线光源更远,故谱 线扩展得更宽。

利用WinView32软件对图3的谱图进行数据

图 2 晶体谱仪在 2×10 J 激光器上的配置图 Fig. 2 Spectrometer system on 2×10 J laser

(a) spectra of vertical direction

图 3 激发 Al 靶获取的光谱(第一发次)

Fig. 3 Spectra of Al target ions(shot 1)

处理,然后用自编的 Matlab 程序对光谱波长进行校 准,得到谱线波长与强度之间的关系(图 4),图中比 较明显的四段光谱分别以w, v, m, n标示,其中m, n是两谱线带,由多条类锂谱线组成,不代表特定谱 线,n 谱线带还包括类 He 禁戒谱线 z^[17]。各光谱对 应波长数据及跃迁状态如表1所示。

> 表1 Al 的类 He 及伴线波长数据及跃迁状态 Table 1 Al X II He- α and dielectronic satellite transitions and wavelength

Label	Transition	λ /nm
w	$1s2p^{-1}P_11s^{21}S_0$	0.7757
У	$1s2p^{-3}P_11s^{21}S_0$	0.7782
m	—	0.785~0.786
п	—	0.787~0.788

Fig. 4 Spectra intensity of PET crystal. (a) spectra intensity of vertical direction, (b) spectra intensity

of horizontal direction

4.2 X射线偏振度分析

铝的类氦共振线 w 及互组合跃迁 y 线波长差 别较小,为0.0025 nm, Δλ/λ为0.32%, 在此把X射 线在该范围的能量及晶体布拉格角视为没有变化, 同时将 PET 晶体看作完美晶体,其积分衍射率在 w线至y线波段内也保持恒定。因此在该范围内可 以近似用谱线峰值作为光谱强度值。偏振度计算过 程中利用的是谱线强度比值,光谱强度可取相对值, 为任意单位。由于互组合线 y 没有偏振,故在数据处 理时可将 y 线强度归一化,这样处理后共振线 w 的 垂直方向谱线强度明显高于水平方向。采用共振线 w 及互组合跃迁 y 线的比值作为 w 线强度值,再利 用(1)式,(3)式和(4)式计算其偏振度。第一发次的 水平方向, $I_w/I_y = 2.905$, 垂直方向, $I_w/I_y =$

4.595,进而计算出 $P_w = +0.051$ 。

为了探测入射激光能量对偏振度的影响,在较 低的激光功率条件下进行了第二发次实验。考虑到 激光功率偏低,光谱信号较弱,故将两方向晶体及成 像板均设置在靶室内部,水平方向光路布置不变,垂 直方向 PET 晶体距离靶点为 285 mm,晶体中心与 IP 成像板距离为 61 mm, 激光功率为 3.42 J, 实验 结果获取的信号如图 5 所示。利用前面同样的数据 处理方法计算第二发次辐射 X 射线的偏振度为 $P_w = +0.06$,相对于第一发次偏振度增大。两次实 验得到激光等离子体共振线偏振度都能够证实激光 等离子体各向异性现象存在。通过两发次实验比 较,入射激光能量增加,共振线 w 偏振度减小,这与 参考文献[18]结论一致。

图 5 激发 Al 靶获取的光谱(第二发次) Fig. 5 Spectra of Al target ions(shot 2)

值得进一步研究的是平行与垂直两方向谱线强 度比 w/y 的差异,由于类 He 谱线强度比与等离子 体电子温度、密度直接相关^[19],在这类存在偏振现 象的等离子体中,在径向及轴向的电子温度与谱线 强度比的关系曲线也会不一致,因此,从等离子体辐 射光谱推导的电子温度、密度等参量都有差异,基于 X 射线光谱强度信号的等离子体参量诊断结果需要 进行修正。根据本次的实验结果推断等离子体电子 温度,依据垂直方向的实验结果诊断电子温度比水 平方向低。现在尚不能确定哪个方向的数据能更准 确描述等离子体状态,不过最重要的是进行诊断等 离子体电子温度实验时需要记录衍射晶体及感光器 件的布置方位,使得诊断数据结果更加系统全面。

5 结 论

提出在相互正交方向采用相同类型晶体探测偏 振度的测试方案,研究了相应的计算方法。在中国 工程物理研究院 2×10 J 激光装置上进行了激光打 靶实验,利用成像板在相互正交的两方向均获得了 Al 的类 He 谱线及类 Li 伴线,计算出类 He 共振线 偏振度,初步探讨了偏振度与入射激光能量的关系, 并提出基于谱线强度比诊断等离子体电子温度、密 度等参量的方法需要利用偏振度进行修正。

参考文献

- J. Mitroy. Coulomb-phase effects in electron-ion scattering[J]. Phys. Rev. A, 1988, 37(2): 649~652
- 2 J. Mitroy, D. W. Norcross. Electron-impact excitation of the resonance transition in Be⁺[J]. *Phys. Rev. A*, 1988, **37**(10): 3755~3764
- 3 H. L. Zhang, D. H. Sanpson, R. E. H. Clark. Relativistic cross section for excitation of highly charged ions to specific magnetic sublevels by an electron beam[J]. *Phys. Rev. A*, 1990, 41(1): 198~206
- 4 J. R. Henderson, P. Beiersdorfer, C. L. Bennett *et al.*. Polarization of X-ray emission lines from heliumlike scandium as a probe of the hyperfine interaction [J]. *Phys. Rev. Lett.*, 1990, **65**(6): 705~708

- 5 P. Beiersdorfer, D. A. Vogel, K. J. Reed *et al.*. Measurement and interpretation of the polarization of the X-ray line emission of heliumlike Fe XXV excited by an electron beam[J]. *Phys. Rev.* A, 1996, **53**(6): 3974~3981
- 6 A. S. Shlyaptseva, S. B. Hansen, V. L. Kantsyrev et al., Xray spectropolarimetry of high-temperature plasmas [J]. Rev. Sci. Instrum., 2001, 72(1): 1241~1244
- 7 J. C. Kieffer, J. P. Matte, H. Pe' pin *et al.*. Electron distribution anisotropy in laser-produced plasmas from X-ray line polarization measurements[J]. *Phys. Rev. Lett.*, 1992, **68**(4): 480~483
- 8 J. C. Kieffer, J. P. Matte, M. Chaker *et al.*. X-ray-line polarization spectroscopy in laser-produced plasmas [J]. *Phys. Rev. E*, 1993, **48**(6): 4648~4658
- 9 Wang Hongjian, Xiao Shali, Shi Jun et al.. X-ray polarization spectrum diagnosis of laser-produced plasmas [J]. Acta Optica Sinica, 2009, 29(6): 1710~1713 王洪建,肖沙里,施 军等. 激光等离子体 X 射线极化光谱诊

- 10 T. Fujimoto, H. Sahara, T. Kawachi *et al.*. Polarization of impurity emission lines from a tokamak plasma[J]. *Phys. Rev.* E, 1996, 54(3): R2240~R2243
- 11 P. Beiersdorfer, J. C. Lo' pez-Urrutia, V. Decaux *et al.*. Polarization spectroscopy of X-ray transitions from beam-excited highly charged ions [J]. *Rev. Sci. Instrum.*, 1997, **68** (1): 1073~1076
- 12 Y. Inubushi, H. Nishimura, M. Ochiai *et al.*. X-ray line polarization spectroscopy to study hot electron transport in ultrashort laser produced plasma [J]. J. Q. S. R. T., 2006, 99(1): 305~313
- 13 D. L. Robbins, P. Beiersdorfer, A. Ya. Faenov *et al.*. Polarization measurements of the Lyman- α_1 X-ray emission lines of hydrogenlike Ar¹⁷⁺ and Fe²⁵⁺ at high electron-impact energies [J]. *Phys. Rev. A*, 2006, **74**(2): 022713-1~ 5
- 14 K. Tohru, K. Takeshi, K. Fumihiro *et al.*. Polarization of Heα radiation due to anisotropy of fast-electron transport in ultraintense-laser-produced plasmas[J]. *Phys. Rev. Lett.*, 2007, **99**(11): 115003-1~4
- 15 J. R. Henderson, P. Beiersdorfer, C. L. Bennett *et al.*. Polarization of X-ray emission lines from heliumlike scandium as a probe of the hyperfine interaction[J]. *Phys. Rev. Lett.*, 1990, **65**(6): 705~708
- 16 Wang Qingyun, Qi Hongji, He Hongbo *et al.*. Design and manufacture of birefringent non-polarizing thin films[J]. Acta Optica Sinica, 2010, **30**(7): 2154~2158
 王晴云,齐红基,贺洪波等.双折射消偏振膜的设计和制备[J]. 光学学报, 2010, **30**(7): 2154~2158
- 17 N. J. Peacock, M. G. Hobby, M. Galanti. Satellite spectra for helium-like ions in laser-produced plasmas [J]. J. Phys. B, 1973, 6(10): L298~L304
- 18 F. Walden, H. -J. Kunze, A. Petoyan *et al.*. Polarization measurements of the Al XII resonance line emitted from micropinch plasmas of a vacuum spark discharge[J]. *Phys. Rev. E*, 1999, **59**(3): 3562~3570
- 19 Shi Jun, Xiao Shali, Wang Hongjian *et al.*. Argon-puff Z-pinch implosion plasma temperature diagnostics [J]. *Opt. Precision Eng.*, 2009, **17**(8): 1819~1824 施 军,肖沙里,王洪建等. 氯气内爆Z箍缩等离子体温度诊断 [J]. 光学精密工程, 2009, **17**(8): 1819~1824